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Abstract

This paper presents a version of the proportionally calibrated almost ideal demand
system (PCAIDS) model, useful for merger simulations, which can be econometrically
estimated using price data for two firms in a market. The model is then applied to a database
of the Argentine gasoline market, and its results are compared to the ones obtained with other
alternative specifications.
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1. Introduction

The applied economic literature generally uses demand models to estimate different

aspects of the behavior of a market, group of markets or set of consumers’ decisions. One

demand model which is considerably popular is the so-called “almost ideal demand system”

(AIDS), originally proposed by Deaton and Muellbauer (1980).

The estimations using AIDS are usually econometric, and require data on prices and

expenditure shares (or revenue shares) for a number of goods or varieties of a certain good.

One area in which these models have been extensively used is the analysis of the effects of a

horizontal merger, especially when that merger involves differentiated products1. This use is

particularly important to analyze the probable competitive effects of a proposed merger, since

that analysis is generally an important input in the process of approving that merger by an

antitrust authority.

The objective of the use of demand models such as AIDS in the process of evaluating

a proposed merger is generally to perform a merger simulation. Merger simulations imply a

procedure of forecasting the impact of a horizontal merger on prices and quantities in a certain

market, and one of the most important factors that determine that impact is the cross elasticity

between the products supplied by the merging firms. That elasticity, together with other own-

price and cross elasticities, emerge as the result of an econometric estimation, if we are able to

gather enough data to perform it.

In many merger contexts, however, the analyst does not have all the data necessary to

                                                          
* The views and opinions expressed in this publication are those of the author and are not necessarily those of
CEMA University. I thank comments by Andrés Chambouleyron and Pablo Spiller.
1 In that area, the first important contribution is Hausman, Leonard and Zona (1994). Other developments along
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perform a complete econometric demand estimation. This has generated the need to develop

merger simulation models that keep some of the virtues of the econometric demand models

but have less data requirements. One alternative based on AIDS is the so-called

“proportionally calibrated almost ideal demand system” (PCAIDS), developed by Epstein and

Rubinfeld (2002). This model has the same logic than AIDS but it incorporates a number of

restrictions that make that all the elasticity values depend on a single parameter and on a set of

revenue market shares. Making use of that property, a PCAIDS merger simulation can be

performed using an estimation of the aggregate market price elasticity, an estimation of the

own-price elasticity of a single product variety, and a vector of market shares for the different

varieties that are sold in the market.

As we see, PCAIDS models do not require the econometric estimation of a complete

demand system, but simply an estimation of an aggregate demand and an estimation of the

elasticity of a certain variety, together with a single observation of market shares. Compared

to the full AIDS model, the PCAIDS model has the advantage that it requires fewer data, and

that it also imposes restrictions that guarantee that the estimated coefficients have the “right”

signs and relative magnitudes2. PCAIDS estimations, however, are sensitive to the

assumptions embedded in the additional restrictions imposed. Moreover, if more information

is available, a PCAIDS model is not as efficient as the full AIDS model, since it is unable to

incorporate that information to the estimation of the coefficients3.

The objective of this paper is to develop an intermediate alternative between the full

AIDS model and the PCAIDS model, that can be econometrically estimated but does not

require as much data as the full AIDS model. In particular, we will be concerned with a case,

which is likely in the context of a proposed merger evaluation, in which we have data on

prices for the merging firms but not for the other firms in the market. We will also assume

that we have data on market shares, in the form of series with the same number of

observations than the price series. With those data, and some algebraic transformations, we

will be able to use the standard econometric AIDS estimation methodology together with the

restrictions imposed by the logic of PCAIDS, obtaining efficient estimators for the PCAIDS

model parameters.

                                                                                                                                                                                    
the same lines include Hausman and Leonard (1997) and Werden (1997).
2 The logic of PCAIDS, for example, implies that if own-price elasticities are negative, then cross elasticities are
always positive and smaller in absolute value, as well as other desirable properties of demand parameters.
3 For example, if we have data on the evolution of market shares along time or about differences among market
shares in different geographic regions or groups of buyers, this information is not used in a typical PCAIDS
merger simulation, since that simulation is exclusively based on a “photograph” of average market shares at a
certain point in time.
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2. Theoretical analysis

Let us assume that we are dealing with a market with N varieties of a product. If we

apply the logic of the AIDS model to the analysis of the demand of those varieties, then we

can write the following market share equations (Si), as functions of the natural logarithms of

prices (Pi), and other demand-shifting variables (Y):

S1 = a10 + a11⋅ln(P1) + a12⋅ln(P2) + ... + a1N⋅ln(PN) + a1Y⋅Y (1) ;

S2 = a20 + a21⋅ln(P1) + a22⋅ln(P2) + ... + a2N⋅ln(PN) + a2Y⋅Y (2) ;

... ... ... ... ... ... ... ...       ;

SN = aN0 + aN1⋅ln(P1) + aN2⋅ln(P2) + ... + aNN⋅ln(PN) + aNY⋅Y (3) .

The coefficients aij of a model like that have a correspondence with the price

elasticities of the demand for the different product varieties. That correspondence is the

following:
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where η is the aggregate demand elasticity of the product under analysis, ηii is the own-price

elasticity of the ith variety, ηij is the cross price elasticity of the ith variety with respect to the

price of the jth variety, and market shares are defined so that their sum always adds up to one

(that is, ΣSi = 1, in every observation).

In a PCAIDS model, all these relationships also hold, together with some other

assumptions about the relationships of the aij coefficients among themselves. These additional

assumptions are essentially three: proportionality, adding-up and homogeneity. Under

proportionality, we assume that sales are diverted away from a product variety according to

the relative market shares of the other varieties. This implies that the cross-price parameters

have the following relationship with the own-price parameters:
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Let us we now introduce an adding-up property, which implies that:
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Combining (5) and (6), we therefore have that:
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Finally, the homogeneity assumption implies that “aij = aji”, and the matrix of price

coefficients implicit in equations (1)-(3) can therefore be written in the following way:
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     (8) ;

whose elements consist of the same parameter (a11) multiplied by different functions of the

product varieties’ market shares.

If we have data on prices and market shares for all the product varieties, a PCAIDS

model can be estimated econometrically by substituting the elements of matrix A that appear

in (8) into the system of equations (1)-(3). This implies writing that system of equations in the

following way:
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and estimating it using a technique that imposes the restriction that the coefficient a11 must be

the same in the N equations.

Let us now assume that we only have information about two prices (P1 and P2) and the

N market shares. Then the system has to be re-written in order to avoid having the other

prices (P3, P4, ... PN) as independent variables. This can be done by inverting the system,

letting the natural logarithms of the prices be the dependent variables, and letting the market

shares be the independent variables.

Unfortunately, an operation like the one described in the previous paragraph implies

inverting matrix A, which –under the restrictions imposed by the PCAIDS model– is singular
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and therefore not invertible. Nevertheless, we are still able to eliminate one row and one

column of matrix A (let’s say, the ones corresponding to ln(P2) and S2) and form a new matrix

with dimension (N-1)x(N-1), which we will call matrix B, that is invertible. Performing that

operation implies:
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Another matrix operation that we will need is to multiply the inverse of matrix B by

the opposite of the omitted column of matrix A (that is, the one that corresponds to the

variable ln(P2)). This multiplication gives an N-1 column vector of ones, that is:
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Let us now write the system of equations (1)-(3) in the following way:

ln(P1) = b10 + b11⋅S1 + b13⋅S3 + ... + b1N⋅SN + b12⋅ln(P2) + b1Y⋅Y (14) ;

ln(P3) = b30 + b31⋅S1 + b33⋅S3 + ... + b3N⋅SN + b32⋅ln(P2) + b3Y⋅Y (15) ;

... ... ... ... ... ... ... ...         ;

ln(PN) = bN0 + bN1⋅S1 + bN3⋅S3 + ... + bNN⋅SN + bN2⋅ln(P2) + bNY⋅Y (16) ;

and substitute (12) and (13) into it. What we obtain is the following:
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If we do not have data on P3, P4, ... PN, we will not be able to estimate equations (18)-

(19), but we will still be able to estimate equation (17), for which we only need data on P1 and

P2. Estimating that equation will give a value for coefficient a11, which we could obtain as a

direct estimate if we invert equation (17) and express it in the following way:
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If we interpret equation (20) as representative of the behavior of price-taking buyers,

this formulation has an additional advantage, which is the fact that all its dependent variables

(P1, P2, Y) can be considered as exogenous to those buyers4. That does not happen if we

estimate equation (17), which has the endogenous expression “S1⋅(1-S1)/S2” as a dependent

variable.

By estimating a11 through equation (20) we are able to recover all the parameters of

matrix A assumed by the PCAIDS model. If we also estimate an aggregate demand equation

of the following form:

ln(Q) = c0 + η⋅ln(PA) + cY⋅Y (21) ;

where Q is the aggregate product quantity and PA is an average price5, then we can use its

estimated value for η, together with the estimated value for a11 from equation (20), in order to

calculate average price elasticities for every product variety. This is the main virtue of the

PCAIDS model, stressed by its proponents6.

3. An application to the Argentine gasoline market

The Argentine gasoline market is a good example to illustrate the methodology that

we have proposed in the previous section, since it is a market in which the Argentine

                                                          
4 This advantage does not hold if we estimate equation (20) as part of a system of demand and supply equations,
since in that case the two prices (or at least one of them) become endogenous variables.
5 This price is ideally the weighted average of the prices of the N varieties sold. If we only have data for P1 and
P2, then it will have to be the weighted average of those two prices only.
6 See, for example, Epstein and Rubinfeld (2002), or Epstein and Rubinfeld (2004).
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Department of Energy compiles monthly quantity and price data. That data is available

discriminated by brand and by province or urban area. In that market, there are four major

national brands (YPF, Shell, Esso and Eg3) and several minor or regional brands. Each of the

major national brands has a market share of more than 10%, and they jointly control over 90%

of the Argentine gasoline supply7.

In fifteen out of the twenty-four jurisdictions in which Argentina is divided (twenty-

three provinces plus the federal district of Buenos Aires City), the four major national brands

are also the four largest gasoline suppliers. These jurisdictions are the city of Buenos Aires

and the provinces of Buenos Aires, Catamarca, Chaco, Chubut, Córdoba, Corrientes, Entre

Ríos, La Pampa, La Rioja, Neuquén, Río Negro, San Juan, San Luis and Santa Fe8. With

those jurisdictions we have built a database of 540 observations, that consists of one monthly

observation per jurisdiction for the period January 1998-December 2000. The main figures of

that database are summarized in table 1. For each observation we have a price and a quantity

for each of the four major national gasoline brands, out of which we can calculate series of

“relative market shares” (i.e., market shares relative to the group of major national brands) for

each brand. We also have some data on characteristics of the jurisdictions (e.g., population

and area) and some data on general economic variables (GDP per capita, consumer price

index and international oil prices).

As this is an example with a good deal of information, we were able to estimate

                                                          
7 These figures correspond to the period 1998-2000. In December 2001 the majority of the shares of Eg3 was
bought by the Brazilian firm Petrobras, which since then has been replacing the brand Eg3 by its own one.
8 In the other nine provinces (Formosa, Jujuy, Mendoza, Misiones, Salta, Santa Cruz, Santiago del Estero, Tierra
del Fuego and Tucumán), either there is at least one major national brand that is not present or there is a regional
brand which is largest than at least one major national brand.

TABLE 1: ARGENTINE GASOLINE MARKET, 1998-2000
Jurisdiction Quantity

(m3) YPF Shell Esso Eg3 YPF Shell Esso Eg3
Bs Aires Province 5.649.650 41,47 24,48 21,19 12,87 0,9912 1,0305 0,9947 1,0159
Bs Aires City 1.667.876 40,84 35,22 18,37 5,58 0,9674 1,0280 0,9709 1,0076
Catamarca 83.008 53,13 12,41 28,91 5,55 0,9768 1,0234 0,9721 1,0077
Chaco 204.616 47,12 34,08 15,71 3,10 0,9939 1,0319 0,9954 1,0093
Chubut 470.718 41,92 6,28 6,94 44,86 0,5100 0,5251 0,5246 0,5261
Cordoba 1.139.086 52,08 21,85 19,11 6,96 0,9742 1,0276 0,9893 1,0071
Corrientes 195.236 49,35 38,32 9,26 3,07 0,9878 1,0362 1,0010 1,0207
Entre Rios 400.178 48,98 23,44 17,77 9,81 0,9778 1,0227 0,9863 0,9979
La Pampa 220.746 41,76 10,46 7,79 39,99 0,9804 1,0383 0,9816 1,0085
La Rioja 126.055 64,15 16,71 11,56 7,58 0,9899 1,0288 0,9951 1,0267
Neuquen 250.527 71,73 9,06 8,72 10,49 0,9919 1,0509 1,0334 1,0382
Rio Negro 294.810 61,69 9,64 7,52 21,15 0,9884 1,0352 1,0154 1,0337
San Juan 186.054 76,46 10,84 8,16 4,54 0,9811 1,0085 0,9815 1,0062
San Luis 142.701 52,85 5,86 25,50 15,78 0,9813 1,0186 0,9844 1,0038
Santa Fe 1.086.087 38,12 30,17 24,39 7,32 0,9700 1,0296 0,9837 0,9946
Total 12.117.347 44,68 24,34 18,91 12,08 0,9606 1,0221 0,9788 0,9433
Source: Department of Energy of Argentina.

Average gross price ($/liter)Relative market share (%)
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demands in several alternative ways. The first approach that we used consisted of estimating

the following system of equations:

ln(Qj/Pop) = Σci(j)⋅Di + cp⋅ln(Pop/Area) + Σcj⋅ln(Pj) + cg⋅ln(GDPpc) (22) ;

for “j = YPF, Shell, Esso, Eg3” (i.e., for each major gasoline brand) and for “i = 1, ... 15” (i.e.,

for each jurisdiction). In that system of equations, Qj is the gasoline quantity sold, Pop is the

population, Area is the area of each jurisdiction, Pj is the gross price for each brand, and

GDPpc is an estimation of the gross domestic product per capita in each observation.

Under this specification, the coefficients “cj” are the price elasticities of the different

demands, while “cg” is the income elasticity. We tried several estimation strategies for these

figures, but we got the best results when we used a seemingly unrelated regression (SUR),

and when we imposed the restrictions that all the own-price elasticities be the same, all the

cross elasticities be the same, and the income elasticities be such that, for each equation, the

sum of all elasticities adds up to zero.

The results of this estimation can be compared with the ones obtained using a full

PCAIDS model. In this case, such a model can be estimated using the following system of

equations:

Sj = Σci(j)⋅Di + cp⋅ln(Pop/Area) + 
j

kkjj
j S1

)Pln(S)Pln()S1(
c

−
⋅Σ−⋅−

⋅  + cg⋅ln(GDPpc)   (23) ;

for “j = YPF, Shell, Esso, Eg3” and for “i = 1, ... 15”, while imposing the restriction specified

by equation (7) on the different “cj” coefficients. Together with that system of equations, we

can also estimate an aggregate gasoline demand like the following:

ln(Qtot/Pop) = Σci(j)⋅Di + cp⋅ln(Pop/Area) + cavg⋅ln(Pavg) + cg⋅ln(GDPpc) (24) ;

where Qtot is total gasoline quantity and Pavg is the average price of gasoline (i.e., the weighted

average of the gasoline prices of each major brand, corresponding to each observation).

Under this specification, the coefficients “cj” are the PCAIDS coefficients, while

“cavg” is the aggregate market price elasticity of gasoline. We also tried several estimation

strategies for these figures, and we got the best results when we used two-stage least squares

(2SLS) for the system and ordinary least squares (OLS) for the aggregate demand.

A third possible strategy consists of estimating three equations (which correspond to

three out of the four major national brands), that follow the specification stated by equation

(20). In our case those equations can be written in the following way:
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S

)S1(S
Σci(j)⋅Di + cp⋅ln(Pop/Area) + cypf⋅ln(Pypf/Pj) + cg⋅ln(GDPpc) (25) ;

for “j = Shell, Esso, Eg3” and for “i = 1, ... 15”, where “cypf” is the PCAIDS coefficient for

YPF. This system of equations has to be estimated together with equation (24), so that we can

get a number for the aggregate price elasticity of gasoline.

Using data for all the brands, we estimated equation (25) as a system and got the best

results when we applied SUR. We also assumed a case where we had price information for

only two brands (YPF and Shell), and estimated only one out of the three equations using

OLS.

The main results of our four estimations appear on table 2. In it we see that the first

two estimation strategies that we used (i.e., the one that directly estimated the price elasticities

and the one that used the full PCAIDS model with four equations) gave us the best goodness

of fit, with R squared coefficients for the YPF equation of over 0.92. On the contrary, the

other two estimations strategies (i.e., the one that used PCAIDS with three equations

following equation (25), and the one that only estimated one equation for YPF and Shell) got

smaller but similar R squared coefficients and also similar results. We can also see that the

PCAIDS YPF coefficient estimated by the second and third estimation strategies are

considerably different, but that the estimations obtained under the third and fourth

specifications are basically the same. The coefficients for the aggregate elasticity, on the

contrary, are the same under estimations 2 and 3, because they have been calculated using the

same regression. Under estimation 4 the coefficient is different, because in the regression we

TABLE 2: ESTIMATION RESULTS
Concept coefficient std error t-statistic p-value
Estimation 1
YPF own elasticity -1,259186 0,193025 -6,523452 0,0000
YPF cross elasticity 0,373186 0,069566 5,364459 0,0000
     R squared YPF 0,933065
Estimation 2
YPF PCAIDS coeff -0,310577 0,073157 -4,245359 0,0000
Aggregate elasticity -0,284380 0,104746 -2,714944 0,0068
     R squared YPF 0,927455
Estimation 3
YPF PCAIDS coeff -2,143999 0,931445 -2,301799 0,0215
Aggregate elasticity -0,284380 0,104746 -2,714944 0,0068
     R squared YPF 0,787810
Estimation 4
YPF PCAIDS coeff -2,247674 1,304455 -1,723076 0,0855
Aggregate elasticity -0,221856 0,103271 -2,148289 0,0322
     R squared YPF 0,787813
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have used a different definition of the average price (using YPF and Shell data only).

The relative equivalence between the first and second estimation strategies can also be

observed when we look at the figures that appear on table 3. In that table we have calculated,

using equation (4) and numbers from tables 1 and 2, the average estimated elasticities for YPF

(both the own-price elasticity and the cross elasticity with respect to Shell) predicted by the

different versions of the PCAIDS model (estimations 2, 3 and 4). We have also calculated,

inverting equation (4), the implicit PCAIDS coefficient for YPF and the implicit aggregate

market elasticity that are consistent with the coefficients obtained under estimation 1. The

numbers that appear on table 4 also serve to see that under estimations 3 and 4 the average

estimated elasticities are also very similar between themselves, but different from the ones

calculated under estimations 1 and 2.

4. Conclusions

The main conclusions of this paper can be summarized as follows:

a) Not only is the PCAIDS model useful to perform merger simulations in the absence of the

data necessary to perform econometric estimations, but also can it be useful to incorporate

restrictions to an econometric estimation of an AIDS model, in order to improve the power of

that estimation (and, especially, the significance of the estimated elasticity coefficients).

b) The PCAIDS model is also useful to perform econometric estimations when we have

enough price data for a few firms but not for all the firms in the market, since its basic

coefficient can be estimated using a single equation that depends on price series for two firms

only.

c) However, as we show in an example that we prepared with data from the Argentine

gasoline market, this last simplification can alter the results, something that is not likely to

occur if we are able to estimate a PCAIDS model using price and quantity data for all the

TABLE 3: COMPARISON OF RESULTS
Concept a(YPF) Elast(Agr) Elast(YY) Elast(YS)
Estimation 1 -0,202434 -0,217088 -1,259186 0,373186

(*) (*)
Estimation 2 -0,310577 -0,284380 -1,375468 0,584629

(*) (*)
Estimation 3 -2,143999 -0,284380 -5,479297 3,007755

(*) (*)
Estimation 4 -2,247674 -0,221856 -5,683424 3,159993

(*) (*)
(*): Average estimated coefficients.
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firms that operate in the market.
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